
PROMETHEUS

By Praneeth Pottimuthi, Shashank Sharma

Shashank Sharma
Principal

Shashank Sharma has been following cloud native OSS for more than five years,
with a particular focus on security, observability and serverless, and other
platform engineering trends. At Tata Communications, he is working as a lead
for Kubernetes and PaaS services.
https://www.linkedin.com/in/shashank-sharma-ft9/

Praneeth Pottimuthi
Engineer

Praneeth is working as a platform developer with Tata Communications, passionate in
Kubernetes and advancing programming skills in Golang. With a good understanding
of monitoring tools like Prometheus and Grafana, he enjoys learning new technologies
and exploring open-source projects like Cilium and K8sGPT.
https://www.linkedin.com/in/praneeth-pottimuthi-408080236/

MEMORY OPTIMISATION

https://www.linkedin.com/in/shashank-sharma-ft9/
https://www.linkedin.com/in/praneeth-pottimuthi-408080236/

1

1

2

2

5

7

7

8

9

10

1. INTRODUCTION...

2. WHY SHOULD WE OPTIMISE PROMETHEUS MEMORY USAGE?.............................

3. OUR APPROACH TO PROMETHEUS MEMORY OPTIMISATION..

 3.1 Shortlisting metrics with most timeseries per component.........................

 3.2 Finding unused metrics..

4. HOW TO DROP METRICS AND LABELS FROM PROMETHEUS METRICS..........................

5. RESULTS..

 5.1 Cluster 1...

 5.2 Cluster 2...

 5.3 Cluster 3..

TABLE OF CONTENTS

1

Managing memory in Prometheus can be tricky, especially in Kubernetes environments where a vast
number of metrics are constantly being generated. Whether you’re just getting started with
optimising Prometheus memory or have tried it before without success, this blog is here to guide
you.

In this blog, we'll cover key strategies for e�ectively reducing memory usage in Prometheus,
troubleshoot common issues like unexpected memory increases.

Before we dive in, here are some general strategies for reducing Prometheus memory usage:

For those interested in diving deeper, we were inspired by several YouTube videos on this topic. If
you want to explore these resources, feel free to check them out. But if you're eager to jump straight
into optimising your setup, skip to the next section and get your hands dirty!
Prometheus memory cut in half: https://www.youtube.com/watch?v=29yKJ1312AM
Make Prometheus use less memory: https://www.youtube.com/watch?v=suMhZfg9Cuk
How not to scale your Prometheus: https://www.youtube.com/watch?v=5BqZqGcM4-g

We used 2.44 version Prometheus in a 3 node cluster (one master and 2 worker node) for running all
these tests.

Label management: In a typical Go heap profile, around 31% of memory is occupied by labels.
Reducing the number of labels can have a significant impact on memory usage.
Scraping optimisation: Scraping processes take up about 27% of the memory. By optimising
scraping intervals and targets, you can further reduce memory consumption.
Rule optimisation: Prometheus rules load all the historical data within the specified time range.
If a rule references a large time window, Prometheus must load extensive historical data to
evaluate the conditions. Using shorter time ranges in your rules can significantly cut down on
memory usage.

2. WHY SHOULD WE OPTIMISE PROMETHEUS MEMORY USAGE?

1. INTRODUCTION

In Kubernetes, many components expose metrics that Prometheus scrapes. But with hundreds of
metrics coming in, memory consumption can spike unexpectedly. Prometheus stores these metrics
as time series in its TSDB (time series database), but not all of them are useful. And let’s be
honest—nobody wants to sit down and manually sift through every metric to decide what's
important and what isn’t. Optimising memory is crucial not only for improving performance but also
for keeping your infrastructure costs under control. So, let's dive in and see how you can make your
Prometheus instance more e�cient.

https://www.youtube.com/watch?v=29yKJ1312AM
https://www.youtube.com/watch?v=suMhZfg9Cuk
https://www.youtube.com/watch?v=5BqZqGcM4-g

3. OUR APPROACH TO PROMETHEUS MEMORY OPTIMISATION
The smart way to optimise memory is to target the components that have the highest number of
time series and focus on removing unnecessary metrics from them. This is more e�cient than
trying to deal with every single metric, especially in production environments. Components with a
lesser number of time series count usually don't impact memory significantly, so it's better to let
them be.

Now, if you find a metric useful but think some of its labels are unnecessary, you can remove the
labels instead of dropping the metric entirely. This can be done through metric relabeling which we
are going to talk about in later sections.

Before diving into relabeling, we have compiled a list of metrics that consume a lot of time series
but might not be useful. Note that this is based on our own research and what metrics we think are
redundant, so we encourage you to double-check before dropping anything.

3.1 Shortlisting metrics with most timeseries per component
To identify these metrics, you can use a command like this:
topk(20, sum by (__name__) (count by (__name__) ({__name__=~"apiserver_.+",
job="apiserver"})))
However, there’s a catch - the above command works, but the apiserver metrics might be used by
other components, not just the apiserver itself. So, it's better to refine the query to something like
this:
topk(20, sum by (__name__) (count by (__name__) ({__name__=~".+", job="apiserver"})))
For other components, I’ve updated this approach.
apiserver:

2

Dropped metrics/labels:
apiserver_request_slo_duration_seconds_bucket

(NA indicate whole metric is dropped)

Metric

apiserver_request_duration_seconds_bucket

apiserver_request_slo_duration_seconds_bucket

apiserver_request_sli_duration_seconds_bucket

apiserver_response_sizes_bucket

apiserver_watch_events_sizes_bucket

Component, endpoint, dry_run

NA

NA

NA

NA

Labels dropped

Kubelet:

kube-state-metrics:

3

Dropped metrics/labels:

Metric

container_blkio_device_usage_total id(because each container has got unique id)

Labels dropped

4

Dropped metrics/labels:

Istio:

Metric

kube_pod_status_reason

kube_pod_tolerations

kube_pod_status_qos_class

kube_pod_container_status_waiting_reason

kube_pod_init_container_status_waiting_reason

NA

NA

NA

NA

NA

Labels dropped

Dropped metrics/labels:

Metric

istio_request_duration_milliseconds_bucket
le,request-protocol,source-app, source-
canonical-serivce, source-worload, response
flags, reporter

istio_request_bytes_sum
le, request-protocol,
source-app,source-canonical-serivce,
source-worload , response flags ,reporter

Labels dropped

5

3.2 Finding unused metrics

Metric

istio_request_bytes_bucket

istio_response_bytes_bucket

envoy_listener_manager_lds_update_duration_bucket

envoy_cluster_manager_cds_update_duration_bucket

envoy_server_initialisation_time_ms_bucket

NA

NA

NA

NA

NA

Labels dropped

If you're unsure which metrics to drop, start here. But remember, this is just a starting point—don’t
rely solely on it when deciding which metrics to drop.
https://grafana.com/blog/2021/07/02/how-to-quickly-find-unused-metrics-and-get-more-value-fr
om-grafana-cloud/

Generally speaking, the metrics exposed by each component are primarily consumed in one of
two ways: through Grafana dashboards or via Alertmanager rules. To optimise memory
e�ectively, we need to evaluate both.

Let’s start with the Grafana dashboards. Instead of manually checking each dashboard's JSON,
which can be time-consuming, you can identify unused metrics by finding which metrics are
actively used across all your dashboards. To simplify this process, you can use a tool called
Cortex.

Installing cortex
First, download and install Cortex:

$ curl -fSL -o "cortextool"
"https://github.com/grafana/cortex-tools/releases/download/v0.11.0/cortextool_v0.11.0_Linux_x86
_64"

$ chmod a+x "cortextool"

$./cortextool –help

Using cortex with Grafana
As of Grafana version 9.1, the API key method has been replaced by service account tokens. To
generate a token:

Navigate to the Service Accounts section under the Administration dropdown in Grafana.

1. Create a service account token to use as your Grafana key.

With your new token, you can run Cortex to analyse your Grafana dashboards and output a list
of used metrics:

./cortextool analyse grafana --address=http://grafanaserviceip:port --key=<your_key>
--output=example.json

This command generates a JSON file (example.json) listing all metrics currently used in your
Grafana dashboards.

By comparing this list with the metrics collected by Prometheus, you can identify and remove
those that are no longer in use, streamlining your memory usage and improving overall
performance.

https://grafana.com/blog/2021/07/02/how-to-quickly-find-unused-metrics-and-get-more-value-from-grafana-cloud/
https://github.com/grafana/cortex-tools/releases/download/v0.11.0/cortextool_v0.11.0_Linux_x86_64
https://github.com/grafana/cortex-tools
https://grafana.com/docs/grafana/latest/administration/service-accounts/migrate-api-keys/#:~:text=To%20migrate%20a%20single%20API%20key%20to,Click%20Migrate%20to%20service%20account.

6

We should now check with alert manager rules
For this, we’ll use the Mimir tool, which analyses rules under /etc/prometheus/rules and helps you
find unused metrics in a clear and readable format.
https://0xdc.me/blog/how-to-find-unused-prometheus-metrics-using-mimirtool/

Installing Mimirtool
First, install Mimirtool by running the following commands:
bash
curl -fLo mimirtool
https://github.com/grafana/mimir/releases/latest/download/mimirtool-linux-amd64
chmod +x mimirtool

Next Steps: Analysing Prometheus rules
To analyse your Prometheus rules and identify unused metrics, follow these steps:
1. Extract your Prometheus rules using kubectl:

kubectl exec -it <prometheus-pod-name> -n <namespace> -- sh -c 'for i in `find
/etc/prometheus/rules/ -type f`; do cat $i; done' > my-prom-rules.yaml

2. Clean up the extracted rules file:
sed -i -e 's/groups://g' -e '1s/^/groups:/' my-prom-rules.yaml

3. Use Mimirtool to analyse the rules:
mimirtool analyse rule-file my-prom-rules.yaml

This will generate a metrics-in-ruler.json file in your current directory. This file lists all the metrics
used in your Prometheus rules, making it easier to spot those that aren’t in use.
By cross-referencing this with the metrics gathered by Prometheus, you can confidently decide
which metrics to drop, further optimising your memory usage.

Now, let’s get to the main topic - Dropping Metrics and Labels
Once you've narrowed down the list of metrics to drop, the next step is to actually configure
Prometheus to not scrape them and/or remove them from the existing TSDB. Learn how you can
do it in the next chapter.

https://grafana.com/blog/2021/07/02/how-to-quickly-find-unused-metrics-and-get-more-value-from-grafana-cloud/

https://0xdc.me/blog/how-to-find-unused-prometheus-metrics-using-mimirtool/
https://github.com/grafana/mimir/releases/latest/download/mimirtool-linux-amd64
chmod +x mimirtool
https://github.com/grafana/mimir

7

Important catch: avoid redundancies!
Here’s a crucial point that could save you from a big headache: In some clusters, instead of
reducing memory usage, you might see a 2x increase. The reason? Redundant services sending
metrics to Prometheus or duplicate ServiceMonitors capturing the same metrics with slight label
variations.

This can occur when applying ServiceMonitors with updated configurations based on previous
subsections. So, extra care is needed when modifying ServiceMonitors, PodMonitors, or
Prometheus scrape configs to avoid unintentional duplication.

Why this matters:

Such duplicates can inadvertently inflate memory usage due to data duplication. To avoid this:

1. Check for redundancies: Use Prometheus' UI to verify that each metric is exposed by a single
service.

2. Consolidate monitors: Ensure no duplicate ServiceMonitors/PodMonitors or Prometheus
scrape config are adding the same metric.

This step is critical to truly optimising your memory usage without unintended consequences.

After applying the drop and labeldrop actions, we have observed a consistent pattern: initially, the
time series count may increase temporarily and typically takes around 2 to 2.5 hours to drop below
the original levels before the label drop.

Why it takes around 2 hours to reflect changes?

The slight memory increase after removing metrics and labels in metric relabeling is a common
observation. This happens because Prometheus initially holds onto the dropped time series in
memory for a short period, typically until they naturally expire from the database (around 2 hours).
During this time, Prometheus may still track these series, even though they are no longer being
updated.

5. RESULTS

4. HOW TO DROP METRICS AND LABELS FROM PROMETHEUS METRICS
To drop metrics or labels, you'll need to use the metricRelabelConfigs section in your
ServiceMonitor, podmonitor or Prometheus scrape config’s. It's important to note that this isn't the
same as relabel_config, which applies during the scrape phase, before metrics are ingested. Since
we're dealing with metrics that have already been scraped, we need to use metricRelabelConfigs,
which is applied post-ingestion. Use drop action to remove entire metrics and labeldrop action to
remove specific labels from metrics. Here's an example configuration

spec:
 endpoints:
 - bearerTokenFile: /var/run/secrets/kubernetes.io/serviceaccount/token
 metricRelabelings:
 - action: drop
 regex:
(apiserver_request_slo_duration_seconds_bucket|apiserver_request_sli_duration_seconds_buck
et|apiserver_response_sizes_bucket|apiserver_watch_events_sizes_bucket)
 sourceLabels:
 - __name__
 - action: labeldrop
 regex: (component|endpoint|dry_run)

https://last9.io/blog/mastering-prometheus-relabeling-a-comprehensive-guide/

8

5.1 Cluster 1
At 12:00, ServiceMonitor changes were applied in Cluster 1. As shown, there was an immediate
spike in all metrics after 12:00. However, around 14:30, the figures started decreasing—head series
dropped from 212k to 120k, and memory usage decreased by 100MB.

Figure 1: Headseries, headchunks in cluster 1

Figure 2: Appended samples in cluster 1

Figure 3: Memory usage in cluster 1

9

5.2 Cluster 2
At 10:30 08/16, ServiceMonitor changes were applied in Cluster 2. As shown, there was an
immediate spike in all metrics after 10:30. However, around 12:00, the figures started
decreasing—head series dropped from 260k to 160k, and memory usage decreased by 100MB.

Figure 4: Memory usage in cluster 2

Figure 5: Headseries in cluster 2

10

Figure 6: Appended samples in cluster 3 before applying modified service monitors

Figure 7: Headseries, headchunks in cluster 3 before applying modified service monitors

Figure 8: Memory usage in cluster 3 before applying modified service monitors

After applying modified service monitors:
Below are the observations snapped at 11:00 to 12:00 ,few days after applying service monitors as
shown metrics started to reduce, appended samples reduced from 22k to 11k, Prometheus memory
usage went down from 5.64gb to 4.54gb etc.

5.3 Cluster 3
Let’s look at bigger clusters

Before applying modified service monitors:
Below are the observations snapped at 11:00 to 12:00 before service monitors were applied.

11

Figure 9: Appended samples in cluster 3 after applying modified service monitors

Figure 10: Headseries, headchunks in cluster 3 after applying modified service monitors

Figure 11: Memory usage in cluster 3 after applying modified service monitors

If you still feel the memory reduction isn’t enough, you can revisit the methods mentioned earlier
to analyse and drop more metrics and labels for further optimisation.

