
Shashank Sharma and Winnerson Kharsunai

Shashank Sharma
Principal

Shashank Sharma has been following cloud native OSS for more than five
years, with a particular focus on security, observability and serverless, and
other platform engineering trends. At Tata Communications, he is working
as a lead for Kubernetes and PaaS services.
https://www.linkedin.com/in/shashank-sharma-ft9/

Winnerson Kharsunai
Lead

Lead Engineer at Tata Communications with more than four and a half years of
expertise in designing, developing, and delivering high-performance software
solutions. Currently, driving cloud-native transformation by integrating
cutting-edge tools and technologies to provide secure and enhanced user
experience.
https://linkedin.com/in/winnerson

HOW TO PROTECT
KUBERNETES CLUSTERS WITH
GATEKEEPER POLICIES

https://www.linkedin.com/in/shashank-sharma-ft9/
https://linkedin.com/in/winnerson

1. SECURITY VECTORS IN KUBERNETES...
2. OPA GATEKEEPER...
 2.1 Gatekeeper architecture..

 2.2 Why we use Gatekeeper..

 2.3 Upstream policies...

 2.2 Custom policies...

3. WRITING A REGO POLICY..
 3.1 Step 1: Define a ConstraintTemplate..

 3.1.1 Rego Semantics for Constraints..

 3.1.2 Rule Schema...

 3.1.3 What is a Target?...

 3.1.4 Input Review...

 3.2 Step 2: Create a Constraint..

 3.2.1 Match field...

 3.2.2 Parameters field...

 3.2.3 EnforcementAction field..

4. VULNERABILITY FIXES REPORTED BY SCANNERS..
5. AUTOMATION AND A BETTER UX..
 5.1 Policy Exception..

 5.1.1 What can be done with Policy Exception?..

 5.1.2 Available options...

 5.1.3 Examples...

 5.1.4 Checking PolicyException status...

 5.2 Observability...

 5.3 Ticketing...

6. WHAT’S NEXT...

TABLE OF CONTENTS

1
1
2

3

3

5

6

6

6

7

7

7

10

11

12

12

12
12
13

13

13

14

15

15

16

16

2. OPA GATEKEEPER
A great tool to work with static validation policies in a Kubernetes cluster could be OPA Gatekeeper.
It helps with writing these policies in Rego language and then ship them to a Kubernetes cluster
using a CRD – since they are stored in a cluster in the form of CRs, it’s very easy to maintain them.
Gatekeeper helps with auditing violations, mutating resources and much more that we are going to
talk about at length in the following sections.

Static validation policies: These policies are enforced in a Kubernetes cluster to make sure that all
the native resources or custom resources follow the configuration standard set by the cluster
administrator or the service provider. One example could be to enforce a policy that makes sure that
a Pod can’t run in the cluster if it’s using host path as volume.

There are many OSS tools that allow this way of policy enforcement, such as Gatekeeper, Kyverno,
Kubewarden and more! These tools also have libraries of policies which can be applied in a
Kubernetes cluster without much hassle.

Software supply chain security: In a Kubernetes cluster, software supply chain security comes into
play when we talk about the OCI image that’s going to run as a container – hardened images like
distroless or images that maintain zero CVEs (like chainguard images), signed images with SBOM,
whitelisted registries, schema validations.

Runtime policies: While the above two vectors address the prevention of shipping bad
configurations and code, there is some security to be enforced at runtime – what happens if the bad
configuration and code is already running in the Kubernetes cluster, how do you make sure that the
problem is fixed without redeploying or getting downtime? Some tools that help address these
problems are kubearmor, tetragon and more.

Compliance scanners: Apart from the policies, there is an emerging need for a Kubernetes cluster to
follow certain compliances either set by the community or in many places, even the government.
Some compliance examples are CSI, CISA and more. You can also create your own
environment-based compliances and scan Kubernetes clusters against them. There are some tools
like Kube-Bench, Trivy that help addressing the compliance scanning space. In addition to
compliance checks, you can also use tools like Kube-Hunter to perform penetration testing and
generate reports based on the findings.

In this blog, we are going to talk in detail about the static validation policies, be sure to follow along,
and we will talk about security vectors in future blogs!

1. SECURITY VECTORS IN KUBERNETES
Like in any software, there are a number of ways a false actor can perform harmful activities in a
Kubernetes cluster, and it can be di�cult to find tools that can safeguard your cluster against all of
them. To understand these security vectors in general, a good place to start is reading Mandiant
reports (or M-Trends) published every year. We believe that some of the issues reported can directly
be translated into some broad security categories from the perspective of a Kubernetes cluster and
these are:

Static validation policies
Software supply chain security
Runtime policies
Compliance scanners

1

https://cloud.google.com/security/resources/m-trends
https://cloud.google.com/security/resources/m-trends
https://github.com/open-policy-agent/gatekeeper
https://github.com/kyverno/kyverno
https://github.com/kubewarden
https://open-policy-agent.github.io/gatekeeper/website/docs/library/
https://www.chainguard.dev/chainguard-images
https://github.com/aquasecurity/kube-bench
https://github.com/aquasecurity/trivy
https://github.com/aquasecurity/kube-hunter
https://open-policy-agent.github.io/gatekeeper/website/docs/

2.1 Gatekeeper Architecture:

Here, Figure 1 depicts the two deployments that are deployed when you install OPA Gatekeeper in a
Kubernetes cluster – gatekeeper-controller-manager and gatekeeper-audit. It shows the
significance of the ConstraintTemplate CRD through which you can define the policy name and
schema, which further generates a new constraint CRD. You can then define your Rego policies in
the CRs. This follows the same format as any CRD in Kubernetes does, where you first create a CRD
and then CRs that follow the schema defined in that CRD.

And Figure 2 talks about how a request reaches the API server and how it is being handled from the
perspective of two very important Kubernetes resources – validating and mutating webhook
configurations.

A validating webhook configuration can validate a resource (native or custom) against some rule
defined. In OPA Gatekeeper, you can define such rules through the constraint CRs. Once this is done,
every new Kubernetes resource (subjected to the validating webhook configuration) will only be
created successfully if it does not violate the rules.

A mutating webhook configuration helps with mutating a resource(native or custom) based on the
mutating rules defined. In OPA Gatekeeper, this can be achieved by making use of their Assign CRD.

2

Figure 1: Components installed with OPA Gatekeeper

Pod

Deployment

Service

Ingress

Constraint CRs

watches over resources
to enforce policies

Generates the CRD for a constraint
with some name and schema defined
in ConstraintTemplate

Audit runs periodically and
sets the violations in the
constraint CR

ConstraintTemplate is a CRD
usually created per policy

ConstraintTemplate CRs

Gatekeeper-controller-manager Gatekeeper-audit

Figure 2: Validating and Mutating webhook flow

API
HTTP

Handler

API Request

Webhook Webhook Webhook

Authentication
Authorisation

Kubernetes Cluster

Mutating
Admission

Object
Schema

Validation

Validating
Admission

Persisted
to etcd

https://open-policy-agent.github.io/gatekeeper/website/docs/install
https://open-policy-agent.github.io/gatekeeper/website/docs/constrainttemplates/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://open-policy-agent.github.io/gatekeeper/website/docs/mutation

Figure 3: Already added namespaces and pods in constraint CR

But this doesn’t mean that other tools don’t come with their advantages, and we certainly think that
tools like Kyverno where you can write policies in yaml format and Kubewarden where you can use
webassembly to write policies do come really close.

We categorise the policies we deploy into “upstream policies” and “custom policies”. Before we dive
deep into what these policies are and how they are written or customised, it’s important that we
discuss in brief what these two categories are - upstream policies are slightly flavoured with source
of truth being the OPA Gatekeeper policy library and custom policies are completely derived out of
the customer and platform requirements where we run our Kubernetes Service (IKS).

3

2.2 Why we use Gatekeeper:
Even though there are lots of great tools in the CNCF landscape that help with the same use case,
we use OPA Gatekeeper because of the following reasons:

It has a rich past with its parent OSS project OPA.
The UX is cloud-native with CRDs and integrations with monitoring tools.
It has a huge library of production grade policies already available to be used.
The ability to write complex queries in Rego which can be easily maintained and tested using
their CLI.

2.3 Upstream Policies
These policies adhere to the standard set by the policies in the OPA Gatekeeper policy library but
add a few more things on top for better automation and UX. These include:

We already add certain namespaces and pods in the constraint that need exemption from a
particular constraint. Example: to exempt pods of Istio, Prometheus etc., from a policy that
blocks pods that mount a token to API Server. Its implementation looks something like this:

We add a new parameter in the constraint through which the complete namespace can be
exempted from either all the constraints or that particular constraint by labelling that
namespace with the appropriate key-value pair. Example: to exempt pods created in
namespace “test” from the constraint or the constraint that blocks running the container in
privileged mode. Its implementation looks something like this:

https://www.openpolicyagent.org/
https://www.tatacommunications.com/solutions/cloud/izo-cloud-platform-services/izo-cloud-platform-for-kubernetes-solutions/

We package the following policies:

k8s-automount-serviceaccount-token: Controls the ability of any Pod to enable
automountServiceAccountToken.

k8s-block-clusterip-services-with-externalip: Disallows all Services with type ClusterIP to have
ExternalPs.

k8s-block-loadbalancer-services: Disallows all Services with type LoadBalancer. This is done
because IKS does not support these types of services, and if not blocked it can be misused.

k8s-block-nodeport-services: Disallows all Services with type NodePort.

psp-allow-privilege-escalation: Controls escalation to root privileges.

psp-capabilities: Controls access to linux capabilities in containers.

psp-forbidden-sysctls: Controls the `sysctl` profile used by containers.

psp-host-network-ports: Controls usage of host network and ports by pod containers.

psp-privileged-containers: Controls the ability of any container to run in privileged mode.

psp-volume-types: Restricts the mountable volume types on containers.

4

We changed a few things in the constraint that restricts usage of volume types in a pod where
we do allow usage of hostpath volumes but in a limited capacity. Example: a Kubernetes
cluster that has a disk attached to the nodes at path /nfs/foo.

To use this as a volume, a cluster administrator will have to create a configmap in
“gatekeeper-system” namespace with either the absolute path or prefix path, which will look
something like this:

Figure 4: Labels to improve the UX of exemption from constraints

Figure 5: Allowing hostpath volumes

https://github.com/kubernetes/kubernetes/issues/97076
https://github.com/kubernetes/kubernetes/issues/97076
https://github.com/kubernetes/kubernetes/issues/97076

Now that we have seen the vast variety of policies that can be written, it’s important that we also
understand what’s the recipe of these policies, how we empower our security with it and how you
can create more policies.

2.4 Custom Policies
These policies have the automation and UX improvements of upstream policies already baked in.
The main objective for creating these policies is to cover gaps and use cases that arise due to the
platform variability and the consumption of a Kubernetes cluster by a customer.

We package the following policies:

tcl-allow-namespace-labels: Restricts the ability to label namespaces with certain key-value
pairs to privileged users/groups only. Here, the key-value pair, privileged users/groups are
specified in the constraint.

tcl-block-cluster-admin-role: Restricts all ClusterRoleBindings with a `cluster-admin` roleRef
unless they are annotated with a certain key-value pair. This addresses a kube-bench test. Here,
the key-value pair is specified in the constraint.

tcl-block-delete-resource: Blocks deletion of some very crucial resources unless they are
annotated with a certain key-value pair. However, if the users/groups belong to a privileged
group, the annotation is not necessary, this is done to not block deletion of resources by their
controllers (owners). Here, the key-value pair and the privileged users/groups are specified in
the constraint.

tcl-block-deny-group: Restricts unprivileged users/groups from performing operations such as
create, update, and delete in the specified namespaces. Here, unprivileged users/groups and
the namespaces are specified in the constraint.

tcl-block-deny-storageclass-use: Denies unprivileged users/groups from creating PVC/PV with
storageClass having labels with certain key-value pair. Also, if it’s some other user/group which
is not in the list of restricted users/groups, check in which namespace the PVC is being created
with storageClass having that label, it should be in the list of allowed namespaces. Here, the
key-value pair, namespaces and unprivileged users/groups are specified in the constraint.

tcl-block-wildcard-cluster-role: Restricts the use of wildcard (*) in ClusterRole’s apiGroups
unless the ClusterRole is annotated with a certain key-value pair. This addresses a kube-bench
test. Here, the key-value pair is specified in the constraint.

tcl-block-wildcard-ingress: Blocks the ability to create Istio VirtualServices and Gateways with
a blank or wildcard (*) in hostname, since that would enable bad actors to intercept tra�c for
other services in the cluster, even if they don't have access to those services.

tcl-unique-ingress-host: Enforces that all Istio VirtualServices and Gateways unique hostnames.
Does not handle hostname wildcards.

5

https://avd.aquasec.com/compliance/kubernetes/cis-1.9/cis-1.9-policies/5.1/#511-ensure-that-the-cluster-admin-role-is-only-used-where-required-automated

6

3. WRITING A REGO POLICY
Creating a new policy in OPA Gatekeeper involves several steps. Here’s a detailed guide to help you
through the process:

3.1 Step 1: Define a ConstraintTemplate
Before you can define a constraint, you must first define a ConstraintTemplate, which describes both
the Rego that enforces the constraint and the schema of the constraint. The schema of the
constraint allows an admin to fine-tune the behaviour of a constraint, much like arguments to a
function.

The most important pieces of the below ConstraintTemplate YAML are:

validation, which provides the schema for the parameters field for the constraint.

targets, which specifies what "target" (defined later) the constraint applies to. Note that
currently constraints can only apply to one target.

rego, which defines the logic that enforces the constraint.

libs, which is a list of all library functions that will be available to the Rego package. Note that
all packages in libs must have lib as a prefix (e.g. package lib.<something>).

Figure 6: ConstraintTemplate template

1. Everything is contained in one package

2. Limited external data access

There are a few rules for the Rego constraint source code:

3.1.1 Rego semantics for constraints

While template authors are free to include whatever rules and functions they wish to support their
constraint, the main entry point called by the framework has a specific signature:

3.1.2 Rule Schema

Target is an abstract concept. It represents a coherent set of objects sharing a common
identification and/or selection scheme, generic purpose, and can be analysed in the same validation
context.

3.1.3 What is a target?

The data that's passed to Gatekeeper for review is in the form of an input.review object that stores
the admission request under evaluation. It follows a structure that contains the object being created,
and in the case of update operations the old object being updated. It has the following fields:

3.1.4 Input review

3. Specific rule signature schema (described below)

a. No imports

b. Only certain subfields of the data object can be accessed:

c. Full access to the input object

i. data.inventory allows access to the cached objects for the current target

The rule name must be violation.

msg is the string message returned to the violator. It is required.

details allow for custom values to be returned. This helps support uses like automated
remediation. There is no predefined schema for the details object. Returning details is optional.

dryRun: Describes if the request was invoked by kubectl-dry-run. This cannot be populated by
Kubernetes for audit.

kind: The resource kind, group, version of the request object under evaluation.

name: The name of the request object under evaluation. It may be empty if the deployment
expects the API server to generate a name for the requested resource.

namespace: The namespace of the request object under evaluation. Empty for cluster scoped
objects.

object: The request object under evaluation to be created or modified.

7

Figure 7: Rule entrypoint

8

Here is an example ConstraintTemplate that restrict PersistentVolume and PersistentVolumeClaim to
declare storage capacity beyond the allowed capacity described by the constraint to be
present:

oldObject: The original state of the request object under evaluation. This is only available for
UPDATE operations.

operation: The operation for the request (e.g. CREATE, UPDATE). This cannot be populated by
Kubernetes for audit.

uid: The request's unique identifier. This cannot be populated by Kubernetes for audit.

userInfo: The request's user's information such as username, uid, groups, extra. This cannot be
populated by Kubernetes for audit.

Figure 8: Constraint’s schema

9

Figure 9: Rego validation rule

10

Figure 10: Library function

You can install this constraint template with the following command:
kubectl apply -f gatekeeper/custom-policy/tcl-volume-size-restriction/template.yaml

3.2 Step 2: Create a constraint
Constraints are then used to inform Gatekeeper that the admin wants a ConstraintTemplate to be
enforced, and how. This constraint uses the TCLVolumeSizeRestriction constraint template above to
make sure all PersistentVolume and PersistentVolumeClaim are restricted to use storage capacity
beyond the allowed limit:

11

Figure 11: Constraint

The match field defines which resources the constraint will be applied to. It supports the following
types of matchers:

3.2.1 The match field

Note that if multiple matchers are specified, a resource must satisfy each top-level matcher (kinds,
namespaces, etc.) to be in scope. Each top-level matcher has its own semantics for what qualifies as
a match. An empty matcher, a undefined match field, is deemed to be inclusive (matches
everything). Also understand namespaces, excludedNamespaces, and namespaceSelector will
match on cluster scoped resources which are not namespaced. To avoid this, adjust the scope to
Namespaced.

kinds accepts a list of objects with apiGroups and kinds fields that list the groups/kinds of
objects to which the constraint will apply. If multiple groups/kinds objects are specified, only
one match is needed for the resource to be in scope.

scope determines if cluster-scoped and/or namespaced-scoped resources are matched.
Accepts *, Cluster, or Namespaced. (defaults to *)

namespaces is a list of namespace names. If defined, a constraint only applies to resources in
a listed namespace. Namespaces also supports a prefix-based glob. For example, namespaces:
[kube-*] matches both kube-system and kube-public.

excludedNamespaces is a list of namespace names. If defined, a constraint only applies to
resources not in a listed namespace. ExcludedNamespaces also supports a prefix-based glob.
For example, excludedNamespaces: [kube-*] matches both kube-system and kube-public.

labelSelector is the combination of two optional fields: matchLabels and matchExpressions.
These two fields provide di�erent methods of selecting or excluding k8s objects based on the
label keys and values included in object metadata. All selection expressions are ANDed to
determine if an object meets the cumulative requirements of the selector.

namespaceSelector is a label selector against an object's containing namespace or the object
itself, if the object is a namespace.

name is the name of a Kubernetes object. If defined, it matches against objects with the
specified name. Name also supports a prefix-based glob. For example, name: pod-* matches
both pod-a and pod-b.

12

3.2.2 The parameters field
The parameters field describes the intent of a constraint. It can be referenced as input.parameters
by the ConstraintTemplate's Rego source code. Gatekeeper populates input.parameters with values
passed into the parameters field in the Constraint.

3.2.3 The enforcementAction field

The enforcementAction field defines the action for handling Constraint violations. By default,
enforcementAction is set to deny as the default behaviour is to deny admission requests with any
violation. Other supported enforcementActions include dryrun and warn. Refer to Handling
Constraint Violations for more details.

Note that if multiple matchers are specified, a resource must satisfy each top-level matcher (kinds,
namespaces, etc.) to be in scope. Each top-level matcher has its own semantics for what qualifies as
a match. An empty matcher, an undefined match field, is deemed to be inclusive (matches
everything). Also understand namespaces, excludedNamespaces, and namespaceSelector will
match on cluster scoped resources which are not namespaced. To avoid this, adjust the scope to
Namespaced.

You can install this Constraint with the following command:

kubectl apply -f gatekeeper/custom-policy/tcl-volume-size-restriction/constraint.yaml

Although OPA Gatekeeper is nicely packaged and baked with all the important features, as a
Kubernetes service provider, we have a slightly opinionated approach about how we package it in
the Kubernetes clusters deployed using IKS. It’s important to note that the changes we have made
are just wrappers on top of OSS. It ain’t much but it's honest work.

5 AUTOMATION AND A BETTER UX:

4. VULNERABILITY FIXES REPORTED BY SCANNERS
When we previously discussed about the security vectors, we briefly mentioned about compliance
scanners, this is one area where having OPA gatekeeper helps us. There have been instances where
we have patched the vulnerabilities by creating new policies and we will talk about some of them
below.

Kube-bench 5.1.1: This compliance test recommends against using “cluster-admin” role in
ClusterRoleBindings. To comply with this, we created a policy from scratch, which we have already
discussed in the custom policies subsection.

Kube-bench 5.1.3: This compliance test recommends against using “*” wildcards in Roles and
ClusterRoles. To comply with this, we created a policy that addresses the wildcard usage in
apiGroups only for now, although it can easily be enhanced to support verbs and resources too. This
has been discussed in the custom policies subsection.

Kube-hunter avd-ksv-0119: This particular vulnerability reported by penetration testing recommends
against adding "cap_net_raw" capability in a Pod. To comply with this, we created a policy that only
allows very few capabilities to be added in a Pod, we have discussed about this policy in the
upstream policies section.

https://avd.aquasec.com/compliance/kubernetes/cis-1.9/cis-1.9-policies/5.1/
https://avd.aquasec.com/compliance/kubernetes/cis-1.9/cis-1.9-policies/5.1/
https://avd.aquasec.com/misconfig/kubernetes/general/avd-ksv-0119/] (CVE-2020-10749)[https://github.com/kubernetes/kubernetes/issues/91507
https://avd.aquasec.com/compliance/kubernetes/cis-1.9/cis-1.9-policies/5.1/
https://avd.aquasec.com/compliance/kubernetes/cis-1.9/cis-1.9-policies/5.1/
https://avd.aquasec.com/misconfig/kubernetes/general/avd-ksv-0119/] (CVE-2020-10749)[https://github.com/kubernetes/kubernetes/issues/91507
https://open-policy-agent.github.io/gatekeeper/website/docs/violations
https://open-policy-agent.github.io/gatekeeper/website/docs/violations

13

5.1 Policy Exception:
In Kubernetes, managing policies is crucial for maintaining security and compliance. However, there
are scenarios where certain namespaces need exemptions from these policies temporarily or . This
is where the PolicyException (in-house developed Kubernetes CRD) comes into play. It allows
specific namespaces to bypass gatekeeper policies for a predefined duration.

5.1.1 What can be done with PolicyException?
1. Temporary Policy Exemptions: You can temporarily disable specific policies in a namespace.

This is useful for testing, development, or any situation where you need to bypass certain
restrictions without permanently altering your policy configurations.

2. Scheduled Policy Exemptions: PolicyException allows you to schedule when a policy
exemption should start and end. This is particularly useful for planned maintenance
windows or specific project timelines.

5.1.2 Available options
1. Namespace: Specify the namespace where the policy exception will be applied. This field is

immutable once set.

2. Enforcement: Define the duration or the specific time window for the policy exemption.

• Duration: Use this option to specify how long the exception will be active. The format is
XmXdXh (e.g., 5m6d8h for 5 months, 6 days, and 8 hours).

• Time: Use this option to set a start and end time for the exemption. The format follows
the UTC time standard (e.g., 2023-12-01T00:00:00Z).

1. Policy Names: List the policies from which the namespace needs exemptions.

14

5.1.3 Examples
1. Disable Service Account Automount Policy for 1 Hour:

Figure12: PolicyException sample1

2. Disable Service Account Automount Policy for 1 Hour:

Figure13: PolicyException sample2

15

5.1.4 Checking PolicyException status
To monitor the status of your PolicyException resources, use:

5.2 Observability

This command provides details such as the name, namespace, start and end times, duration,
active status, and reason. For example:

Figure14: PolicyException status

Figure15: Grafana dashboard panels view1

• Active: Indicates if the exemption is currently active.

• Reason: Provides the status of the exemption (e.g., Ready, Waiting, Failed).

By leveraging PolicyException, you can manage temporary policy exemptions e�ectively,
ensuring your Kubernetes environment remains both flexible and secure.

Maintaining visibility into policy enforcement is crucial. To achieve this, we integrated opa-exporter
with Gatekeeper and created a comprehensive Grafana dashboard. This setup allows us to monitor
policy violations and ensure compliance e�ectively.

The Grafana dashboard includes several panels that display key metrics, to quickly identify and
address compliance issues. List of few important insights that can be gained from this dashboard:

- violations per namespace

- violations per policy

- list of policies applied in the cluster

- status of the gatekeeper control plane pods

- list of policies by action – deny or dryrun

16

Figure16: Grafana dashboard panels view2

5.3 Ticketing
We have written some prometheus rules that work on top of the observability features
talked above, for example – GatekeeperViolationDeny, GatekeeperAuditPodDown and
GatekeeperControllerManagerPodDown; whenever these alerts are in firing state, a ticket is
automatically created on ticketing systems like zendesk and servicenow. Once a ticket is created, it
can be worked upon by either someone from operations or a dedicated application devops team.

This is not just the case for Gatekeeper violations, this is a general ticketing mechanism for the IZO
Kubernetes Service.

6. WHAT’S NEXT:
We have seen OPA Gatekeeper in its full glory, but what’s next?
The roadmap ahead is a conjunction of new features that are available in OSS and what IKS
provides on top of it. Although this roadmap is still work-in-progress, each item has its own
significance and we can't stress enough how important the activity of continuously enhancing the
security framework is, to deal with the ever-growing list of vulnerabilities. Following are the
features that we are currently invested in:

Gatekeeper external data provider: We have already discussed how we use gatekeeper to fix
vulnerabilities and make Kubernetes cluster compliant here, but this particular feature makes
for an excellent segue into the discussion of using gatekeeper to address another security
vector of software supply chain security.

Validating admission policy: This is a feature that became stable only in Kubernetes v1.30, but
it o�ers a native way of writing validating policy using CEL. It’s important that we evaluate how
we can provide a great UX through gatekeeper where policies can be written in both rego and
CEL.

Structured authorisation configuration: We evaluated the Kubernetes authoriser flow towards
the end of 2022 where we wanted to add a custom authoriser in the request flow to API Server,
but there were some restrictions on achieving our use case back then. Since then, the
authoriser flow has changed quite a lot, and the changes became beta in Kubernetes v1.30
that’s our queue to start our work on it again and make use of the OPA project (not
Gatekeeper) here.

Integration with OTEL: In order to remove the dependency on opa-scorecard, we are
evaluating an integration through which, we can use the logs of “gatekeeper-audit” Pod and
translate them into grafana dashboards.

Runtime security with Apparmor and Seccomp profile, and integration with tools like
KubeArmor that can work with BPF LSM.

